Персептрон - Definition. Was ist Персептрон
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Персептрон - definition

МОДЕЛЬ ВОСПРИЯТИЯ ИНФОРМАЦИИ МОЗГОМ, ПРЕДЛОЖЕННАЯ ФРЭНКОМ РОЗЕНБЛАТТОМ И РЕАЛИЗОВАННАЯ В ВИДЕ ЭЛЕКТРОННОЙ МАШИНЫ «МАРК-1»
Персептрон
  • классификации]] объектов. Зелёная линия — граница классов.
  • Некоторые задачи, которые перцептрон не способен решить: 1, 2 — преобразования группы переносов; 3 — из какого количества частей состоит фигура? 4 — внутри какого объекта нет другой фигуры? 5 — какая фигура внутри объектов повторяется два раза? (3, 4, 5 — задачи на определение «связности» фигур.)
  • обучающегося агента]] со средой. Важной частью такой системы являются обратные связи.
  • Архитектура многослойного перцептрона (обоих подтипов).
  • Логическая схема перцептрона с тремя выходами
  • Решение элементарным перцептроном «задачи XOR». Порог всех элементов <math>\theta</math> = 0.
  • Поступление сигналов с сенсорного поля в решающие блоки элементарного перцептрона в его физическом воплощении
  • Фрэнк Розенблатт со своим творением — «Марк-1»
  • Пороговая функция, реализуемая простым R-элементом
  • Логическая схема элементарного перцептрона. Веса S—A связей могут иметь значения −1, +1 или 0 (то есть отсутствие связи). Веса A—R связей W могут быть любыми
  • искусственного нейрона]] — базового элемента любой нейронной сети
  • Пороговая функция, реализуемая простыми S- и A-элементами

Персептрон         

перцептрон (англ. perceptron, нем. Perzeptron, от лат. perceptio - понимание, познавание, восприятие), математическая модель процесса восприятия (См. Восприятие). Сталкиваясь с новыми явлениями или предметами, человек их узнаёт, то есть относит к тому или иному понятию (классу). Так, мы легко узнаём знакомых, даже если они изменили причёску или одежду, можем читать рукописи, хотя каждый почерк имеет свои особенности, узнаём мелодию в различной аранжировке и т.д. Эта способность человека и получила название феномена восприятия. Человек умеет на основании опыта вырабатывать и новые понятия, обучаться новой системе классификации. Например, при обучении различению рукописных знаков ученику показывают рукописные знаки и сообщают, каким буквам они соответствуют, то есть к каким классам эти знаки относятся; в результате у него вырабатывается умение правильно классифицировать знаки.

Считают, что восприятие осуществляется при помощи сети Нейронов. Модель восприятия (персептивная модель) может быть представлена в виде трёх слоев нейронов: рецепторного слоя (S), слоя преобразующих нейронов (А) и слоя реагирующих нейронов (R) (рис.). Нейрон (согласно наиболее простой модели Мак-Каллока - Питса)- это нервная клетка, которая имеет несколько входов и один выход. Входы могут быть либо возбуждающие, либо тормозные. Нейрон возбуждается и посылает импульс в том случае, если число сигналов на возбуждающих входах превосходит число сигналов на тормозных входах на некоторую величину, называемую порогом срабатывания нейрона. В зависимости от характера внешнего раздражения в S-слое образуется некая совокупность импульсов (сигналов), которые, распространяясь по нервным путям, достигают нейронов А-слоя, где в соответствии с совокупностью пришедших импульсов образуются новые импульсы, поступающие на входы нейронов R-слоя. В нейронах А-слоя суммируются входные сигналы с одним и тем же коэффициентом усиления (возможно с разными знаками), в нейронах же R-слоя суммируются сигналы с различными как по величине, так и по знаку коэффициентами. Восприятие какого-либо объекта соответствует возбуждению определённого нейрона R-слоя. Считают, что коэффициент усиления реагирующих нейронов подобраны так, что различным объектам одного класса соответствуют совокупности импульсов, возбуждающие один и тот же нейрон R-слоя. Формирование нового понятия заключается в установлении коэффициента усиления соответствующего реагирующего нейрона.

В 1957 американский учёный Ф. Розенблатт построил техническую модель зрительного анализатора, названную им П. "Марк-1". В П. "Марк-1" моделью рецепторного нейрона служил Фотоэлемент, моделью преобразующего нейрона - Пороговый элемент с коэффициентом усиления ±1, а моделью реагирующего нейрона - пороговый элемент с настраиваемыми коэффициентами. Входы пороговых элементов А-слоя соединялись с фотоэлементами случайно. П. Розенблатта предназначался для работы в режиме эксплуатации и режиме обучения. В режиме эксплуатации П. классифицировал предъявленные ему ситуации; если из всех R-элементов возбуждался только Ri-элемент, то ситуация относилась к i-тому классу. В ходе обучения по последовательности предъявляемых для обучения примеров вырабатывались коэффициент усиления пороговых элементов R-слоя.

П. "Марк-1" был первой из немногих технических моделей восприятия. В дальнейшем процесс восприятия исследовался методами моделирования на ЦВМ. В 60-х гг. П., или персептивными схемами, стали называть модели восприятия, в которых различают три части: воспринимающую часть, преобразующую часть и реагирующие пороговые элементы. Воспринимающая часть ставит в соответствие каждому объекту вектор x̅, который преобразующей частью переводится в вектор y̅. Вектор относят к j-тому классу, если соответствующая взвешенная сумма реагирующего Rj-элемента превосходит его порог срабатывания. Математическое исследование персептронных схем связано с задачей обучения распознаванию образов (См. Распознавание образов), где выясняется, как должна быть построена преобразующая часть и каков алгоритм установления коэффициента усиления R-элементов в режиме обучения.

Лит.: Розенблатт Ф., Принципы нейродинамики, пер. с англ., М., 1965; Минский М., Пейперт С., Персептроны, пер, с англ., М., 1971; Вапник В. Н., Червоненкис А. Я., Теория распознавания образов, М., 1974.

В. Н. Вапник.

Простейшая структурная схема персептивной модели (персептрона): S-элементы - рецепторы (рецепторный слой нейронов); А-элементы - преобразующие нейроны; R-элементы - реагирующие нейроны. Стрелками показаны направления распространения импульсов по нервным связям.

ПЕРСЕПТРОН         
а, м., психол.
Модель процесса восприятия, осуществляемого при помощи сети нейронов. | П. применяется в системах распознавания образов.
ПЕРСЕПТРОН         
(англ. perseptron, от лат. perseptio - восприятие), устройство, моделирующее процесс восприятия; впервые предложено американским ученым Ф. Розенблаттом (F. Rosenblatt) в 1957 (зрительный анализатор "Марк-1"). Впоследствии персептроном стали называть системы (часто на базе электронно-вычислительных машин) для решения задач, связанных с распознаванием образов.

Wikipedia

Перцептрон

Перцептро́н, или персептрон (англ. perceptron от лат. perceptio — восприятие; нем. Perzeptron) — математическая или компьютерная модель восприятия информации мозгом (кибернетическая модель мозга), предложенная Фрэнком Розенблаттом в 1958 году и впервые реализованная в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.

Перцептрон состоит из трёх типов элементов, а именно: поступающие от датчиков сигналы передаются ассоциативным элементам, а затем - реагирующим элементам. Таким образом, перцептроны позволяют создать набор «ассоциаций» между входными стимулами и необходимой реакцией на выходе. В биологическом плане это соответствует преобразованию, например, зрительной информации в физиологический ответ от двигательных нейронов. Согласно современной терминологии, перцептроны могут быть классифицированы как искусственные нейронные сети:

  1. с одним скрытым слоем;
  2. с пороговой передаточной функцией;
  3. с прямым распространением сигнала.

На фоне роста популярности нейронных сетей в 1969 году вышла книга Марвина Минского и Сеймура Паперта, которая показала принципиальные ограничения перцептронов. Это привело к смещению интереса исследователей искусственного интеллекта в противоположную от нейросетей область символьных вычислений. Кроме того, из-за сложности математического исследования перцептронов, а также отсутствия общепринятой терминологии, возникли различные неточности и заблуждения.

Впоследствии интерес к нейросетям, и в частности, работам Розенблатта, возобновился. Так, например, сейчас стремительно развивается биокомпьютинг, который в своей теоретической основе вычислений, в том числе, базируется на нейронных сетях, а перцептрон воспроизводят на основе бактериородопсин-содержащих плёнок.

Beispiele aus Textkorpus für Персептрон
1. Розенблатт вместо манипулирования словами с помощью программ на Лиспе попытался смоделировать работу нейронов человеческого мозга, создав персептрон - программу, которая училась распознавать образы (например, буквы). Ученые против ученых Военным были интересны персептроны, например, для распознавания силуэтов летящих самолетов.